Validating pertussis data measures using electronic medical record data in Ontario, Canada 1986–2016
McBurney SH, Kwong JC, Brown KA, Rudzicz F, Chen B, Candido E, Crowcroft NS. Vaccine X. 2023; 15:100408. Epub 2023 Nov 21.
Objective — With the increasing use of electronic medical records (EMRs) comes the potential to efficiently evaluate and improve quality of care. We set out to determine if diabetics could be accurately identified using structured data contained within an EMR.
Study Design and Setting — We used a 5% random sample of adult patients (969 patients) within a convenience sample of 17 primary care physicians using Practices Solutions EMR in Ontario. A reference standard of diabetes status was manually confirmed by reviewing each patient's record. Accuracy for identifying people with diabetes was assessed using various combinations of laboratory tests and prescriptions. EMR data was also compared with administrative data.
Results — A rule of one elevated blood sugar or a prescription for an antidiabetic medication had a 83.1% sensitivity, 98.2% specificity, 80.0% positive predictive value (PPV) and 98.5% negative predictive value (NPV) compared with the reference standard of diabetes status.
Conclusion — We found that the use of structured data within an EMR could be used to identify patients with diabetes. Our results have positive implications for policy makers, researchers, and clinicians as they develop registries of diabetic patients to examine quality of care using EMR data.
Tu K, Manuel D, Lam K, Kavanagh D, Mitiku T, Guo H. J Clin Epidemiol. 2011; 64(4):431-5. Epub 2010 Jul 17.
The ICES website uses cookies. If that’s okay with you, keep on browsing, or learn more about our Privacy Policy.