Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community
Background — Readmissions to hospital are common, costly and often preventable. An easy-to-use index to quantify the risk of readmission or death after discharge from hospital would help clinicians identify patients who might benefit from more intensive post-discharge care. We sought to derive and validate an index to predict the risk of death or unplanned readmission within 30 days after discharge from hospital to the community.
Methods — In a prospective cohort study, 48 patient-level and admission-level variables were collected for 4812 medical and surgical patients who were discharged to the community from 11 hospitals in Ontario. We used a split-sample design to derive and validate an index to predict the risk of death or nonelective readmission within 30 days after discharge. This index was externally validated using administrative data in a random selection of 1,000,000 Ontarians discharged from hospital between 2004 and 2008.
Results — Of the 4812 participating patients, 385 (8.0%) died or were readmitted on an unplanned basis within 30 days after discharge. Variables independently associated with this outcome (from which we derived the mnemonic "LACE") included length of stay ("L"); acuity of the admission ("A"); comorbidity of the patient (measured with the Charlson comorbidity index score) ("C"); and emergency department use (measured as the number of visits in the six months before admission) ("E"). Scores using the LACE index ranged from 0 (2.0% expected risk of death or urgent readmission within 30 days) to 19 (43.7% expected risk). The LACE index was discriminative (C statistic 0.684) and very accurate (Hosmer-Lemeshow goodness-of-fit statistic 14.1, p=0.59) at predicting outcome risk.
Interpretation — The LACE index can be used to quantify risk of death or unplanned readmission within 30 days after discharge from hospital. This index can be used with both primary and administrative data. Further research is required to determine whether such quantification changes patient care or outcomes.
Information
Citation
van Walraven C, Dhalla IA, Bell C, Etchells E, Stiell IG, Zarnke K, Austin PC, Forster AJ. CMAJ. 2010; 182(6):551-7. Epub 2010 Mar 1.