Go to content

Cloning and epitope mapping of Cry11Aa-binding sites in the Cry11Aa-receptor alkaline phosphatase from Aedes aegypti


Cry11Aa is the most active Bacillus thuringiensis israelensis toxin against Aedes aegypti larvae. Ae. aegypti alkaline phosphatase (ALP) was previously identified as a Cry11Aa receptor mediating toxicity. Here we report the cloning and functional characterization of this Ae. aegypti Cry11Aa-ALP receptor. Of three ALP’s cDNA clones, the recombinant produced ALP1 isoform was shown to bind Cry11Aa and P1.BBMV peptide phage that specifically binds the midgut ALP-Cry11Aa receptor. An anti-ALP1 antibody inhibited binding to brush border membrane vesicles and toxicity of Cry11Aa in isolated cultured guts. Two ALP1 Cry11Aa binding regions (R59–G102 and N257–I296) were mapped by characterizing binding of Cry11Aa to nine recombinant overlapping peptides covering the ALP1 sequence. Finally, by using a peptide spot array of Cry11Aa domain III and site-directed mutagenesis, we show that the ALP1 R59–G102 region binds Cry11Aa through domain II loop α-8 while ALP1 N257–I296 interacts with Cry11Aa through domain III 561RVQSQNSGNN570 located in β18-β19. Our results show that Cry11Aa domain II and domain III are involved in the binding with two distinct binding sites in the ALP1 receptor.



Fernandez LE, Martinez-Anaya C, Lira E, Chen J, Evans A, Hernandez-Martinez S, Lanz-Mendoza H, Bravo A, Gill SS, Soberón M. Biochemistry. 2009; 48(37):8899-907.

View Source

Contributing ICES Scientists

Associated Sites