Go to content

Bootstrap methods for developing predictive models in cardiovascular research


Researchers frequently use automated model selection methods such as backwards elimination to identify variables that are independent predictors of an outcome under consideration. The researchers propose using bootstrap resampling in conjunction with automated variable selection methods to develop parsimonious prediction models. Using data on patients admitted to hospital with a heart attack, the researchers demonstrate that selecting those variables that were identified as independent predictors of mortality in at least 60% of the bootstrap samples resulted in a parsimonious model with excellent predictive ability.



Austin PC, Tu JV. Am Stat. 2004; 58(2):131-7.

Contributing ICES Scientists

Research Programs

Associated Sites